Net ecosystem CO2 exchange in Mojave Desert shrublands during the eighth year of exposure to elevated CO2

ثبت نشده
چکیده

Arid ecosystems, which occupy about 35% of the Earth’s terrestrial surface area, are believed to be among the most responsive to elevated [CO2]. Net ecosystem CO2 exchange (NEE) was measured in the eighth year of CO2 enrichment at the Nevada Desert Free-Air CO2 Enrichment (FACE) Facility between the months of December 2003– December 2004. On most dates mean daily NEE (24 h) (lmol CO2 m 2 s ) of ecosystems exposed to elevated atmospheric CO2 were similar to those maintained at current ambient CO2 levels. However, on sampling dates following rains, mean daily NEEs of ecosystems exposed to elevated [CO2] averaged 23 to 56% lower than mean daily NEEs of ecosystems maintained at ambient [CO2]. Mean daily NEE varied seasonally across both CO2 treatments, increasing from about 0.1 lmol CO2 m 2 s 1 in December to a maximum of 0.5–0.6 lmol CO2 m 2 s 1 in early spring. Maximum NEE in ecosystems exposed to elevated CO2 occurred 1 month earlier than it did in ecosystems exposed to ambient CO2, with declines in both treatments to lowest seasonal levels by early October (0.09 0.03 lmol CO2 m 2 s ), but then increasing to near peak levels in late October (0.36 0.08 lmol CO2 m 2 s ), November (0.28 0.03 lmol CO2 m 2 s ), and December (0.54 0.06 lmol CO2 m 2 s ). Seasonal patterns of mean daily NEE primarily resulted from larger seasonal fluctuations in rates of daytime net ecosystem CO2 uptake which were closely tied to plant community phenology and precipitation. Photosynthesis in the autotrophic crust community (lichens, mosses, and free-living cyanobacteria) following rains were probably responsible for the high NEEs observed in January, February, and late October 2004 when vascular plant photosynthesis was low. Both CO2 treatments were net CO2 sinks in 2004, but exposure to elevated CO2 reduced CO2 sink strength by 30% (positive net ecosystem productivity5 127 17 g C m 2 yr 1 ambient CO2 and 90 11 g C m 2 yr 1 elevated CO2, P5 0.011). This level of net C uptake rivals or exceeds levels observed in some forested and grassland ecosystems. Thus, the decrease in C sequestration seen in our study under elevated CO2 – along with the extensive coverage of arid and semi-arid ecosystems globally – points to a significant drop in global C sequestration potential in the next several decades because of responses of heretofore overlooked dryland ecosystems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

No cumulative effect of 10 years of elevated [CO2 ] on perennial plant biomass components in the Mojave Desert.

Elevated atmospheric CO2 concentrations ([CO2 ]) generally increase primary production of terrestrial ecosystems. Production responses to elevated [CO2 ] may be particularly large in deserts, but information on their long-term response is unknown. We evaluated the cumulative effects of elevated [CO2 ] on primary production at the Nevada Desert FACE (free-air carbon dioxide enrichment) Facility....

متن کامل

Elevated Atmospheric Co2 Does Not Conserve Soil Water in the Mojave Desert

Numerous studies, including those of desert plants, have shown reduced stomatal conductance under elevated atmospheric CO2. As a consequence, soil water has been postulated to increase. Soil water was measured for .4 yr at the Nevada Desert Free Air CO2 Enrichment (FACE) Facility to determine if elevated atmospheric CO2 conserves soil water for a desert scrub community in the Mojave Desert. We ...

متن کامل

Long-term response of a Mojave Desert winter annual plant community to a whole-ecosystem atmospheric CO2 manipulation (FACE).

Desert annuals are a critically important component of desert communities and may be particularly responsive to increasing atmospheric (CO2 ) because of their high potential growth rates and flexible phenology. During the 10-year life of the Nevada Desert FACE (free-air CO2 enrichment) Facility, we evaluated the productivity, reproductive allocation, and community structure of annuals in respon...

متن کامل

Contemporary evolution of an invasive grass in response to elevated atmospheric CO2 at a Mojave Desert FACE site

Elevated atmospheric CO2 has been shown to rapidly alter plant physiology and ecosystem productivity, but contemporary evolutionary responses to increased CO2 have yet to be demonstrated in the field. At a Mojave Desert FACE (free-air CO2 enrichment) facility, we tested whether an annual grass weed (Bromus madritensis ssp. rubens) has evolved in response to elevated atmospheric CO2 . Within 7 y...

متن کامل

Effects of elevated CO2 on fine root dynamics in a Mojave Desert community: a FACE study

Fine roots ( 1 mm diameter) are critical in plant water and nutrient absorption, and it is important to understand how rising atmospheric CO2 will affect them as part of terrestrial ecosystem responses to global change. This study’s objective was to determine the effects of elevated CO2 on production, mortality, and standing crops of fine root length over 2 years in a free-air CO2 enrichment (F...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005